

Temperature ATM ${ }_{26}$

The Sigcothian Unit

PH Edge

© 2023 DART Meadow LLC

Catalyst

CollisionOrder

Hyorogen
outhrshell

AT\&T $0_{0} \mathbf{0} \boldsymbol{y}$	\$4.4.77\% 区 1:24 PM

$\begin{array}{l}\text { Electron shell: } \\ \mathrm{K}^{2} L^{8} M^{14} N^{2} 0^{0} p^{0} Q^{0} R^{0}\end{array}$	(
Electron configuration:	$=$
$[$ Ar] $] s^{2} 3 d^{6}$	
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$	

Mathematically shearing Chamistry in bringing expaser of the Cut ta the front

 lines af RaclatianDART

Temperature

Cardboard: Sugar
Handkerchief: Salt
(Under Sink, Coaster)
2 Elements have single rings, Hydrogen and Helium.
24 Elements that jump rings. Lightest Elements inner most first.
8 Elements that jump two rings in their own library.
8 Elements that jump three rings in their own library.
8 Elements that jump four rings in their own library.
For a total of twenty six Elements that jump rings.
Then:
Iron (Fe)
Electrons 26
Protons 26
Nuetrons 30
Sigcothian Cubed Unit of Iron 26.5874
Sigcothian Square Unit = 1.4142
Sigcothian Cubed Unit $=1.5874$
Squared $2^{\wedge}\left(2 \sqrt{ }\left(1^{*} .25\right)\right)=1.4142$

Cubed $2 /\left(3 \sqrt{ }\left(1^{*} 2\right)\right)=1.5874$
Atmospheric Pressure (ATM) = 14.6959 lbs per inch squared
The Sigcothian Unit equivalent to the Kelvin
is a difference among Hydrogen in one ATM by Iron where one Sigcothian cubed pound of Hydrogen is dispersed by an equal Sigcothian cubed pound of Hydrogen proportional to the historic 72° Farenheit pollenated food groups.

Hydrogen Raw Sigcothian Cubed Pound $=$ $2,458,377,921,600,000,000,160,464,568,040,664,432,152,040,288,504,672,496$

Two stacked pounds of Hydrogen in one ATM equals two stacked pounds of hydrogen plus one ATM: 19.612600000000000000784552856832496144896248336736432512

Two stacked Iron (Fe) electrons in one ATM equals two stacked Iron (Fe) electrons plus one ATM: 14.69590052

More Hydrogen (H) in the lab than Iron (Fe) is more optimal in isolating the Color Spectrum to define the Sigcothian Spectrum Unit where a project can convert Sigcothian to Kelvin.
A cubed Sigcothian Unit is 1.5874 as to which the one represents the electron and the .5874 is a cubed change in habitat sustaining the same electron at initial power reflecting the loss of the initial habitat.

Hydrogen portion minus Iron portion:
4,916,755,843,200,000,000,320,928,136,080,328,864,304,080,576,008,344,940
The new result represents two pounds of Hydrogen minus 52 electrons.
There are many ways to solve for the spectrum from here but for rfclabs anything done must be at Iron (Fe) or above to define the Sigcothian Spectrum.

Iron (Fe) 26 Electron count Raw Sigcothian Cubed Millimeter $=$ 15,657,200,000,000,000,000,288,280

Standard Heirarchy to cubed millimeter is the from the root Element Hydrogen 6.022E23
Therefore (Fe) equals (6.022E23 * 26) - (6.022E23 * 26) - 6.022E23)) per cubed mm by Electron Count.

Sugar

What is sugar? The white stuff we know as sugar is sucrose, a molecule composed of 12 atoms of carbon, 22 atoms of hydrogen, and 11 atoms of oxygen (C12H22O11).

Salt
Even Compound of Sodium (Na) and Chlorine (Cl)
© 2023 DART Meadow LLC

Edible Salt is $97 \%-99 \% \mathrm{NaCl}$, thus magnesium etc.
Bee Wax
C15H31COOC30H61
Random: Even | Odd
Historical Food Group Temperature Pollenation Bloom 72${ }^{\circ} \mathrm{f}=295.372$ kelvins
$0^{\circ} \mathrm{f}=255.372$ kelvins
$1^{\circ} \mathrm{f}=255.928$ kelvins
$2^{\circ} \mathrm{f}=256.483$ kelvins
$10000^{\circ} \mathrm{f}=5810.928$ kelvins
$1000000^{\circ} \mathrm{f}=555810.928$ kelvins
Farenheit Kelvin's change every 500th or every Two a 1000th which breaks the square exponent.

Sigcothian is 1 count for 1 count.
Celsius is a container for farenheit and mole attribute
Sigcothian is all in one.
One Electron cubed is equal to 1.5874 as well 26 Electrons equal 26.5874 therefore 1 su of color spectrum is $1-.5874$ and $26.5874-.5874$

100000 su equals 100000 Kelvin
su cubed to Farhenheit:
$((a-.5874)-273.15) \times 9 / 5+32=b^{\circ} F$
su squared to Farhenheit:
$((a-.4142)-273.15) \times 9 / 5+32=b^{\circ} F$
Kelvin to Farhenheit:
$(100000 \mathrm{k}-273.15) \times 9 / 5+32=179540.33^{\circ} \mathrm{F}$
Kelvin to Celsius:
$72 \mathrm{~K}-273.15=-201.1^{\circ} \mathrm{C}$
Farhenheit to Celsius:
$\left(72^{\circ} \mathrm{F}-32\right) \times 5 / 9=22.222^{\circ} \mathrm{C}$

Celsius to Fahrenheit:
$\left(22.222^{\circ} \mathrm{C} \times 9 / 5\right)+32=72^{\circ} \mathrm{F}$
Celsius to Kelvin:
$22.222^{\circ} \mathrm{C}+273.15=295.372 \mathrm{~K}$
Farhenheit to Kelvin:
$\left(72^{\circ} \mathrm{F}-32\right) \times 5 / 9+273.15=295.372 \mathrm{~K}$

